
For a round tube (at n = 8)Uav/U 0 = 0.837, while QB = PBUav~ra =, we have 

~o = 1,18K~ (t +2A). (7) 

Finally from Eqs. (i) with allowance for (4) and (7) we obtain the distribution of the dis- 
crete-phase velocity and density at the exit from the tube. 

As we see, the distribution of the discrete-phase parameters a~ the exit from the tube 
when a two-phase mixture flows through it depends on the carrier-phase parameters, the pro- 
perties of the discrete pahse, and the geometrical characteristics of the channel. The data 
obtained can be used as limiting data in calculations of diverse technical equipment, both 
under study and under design. 

NOTATION 

Uo, carrier-phase velocity on the axis; U, carrier-phase velocity; Uav , average car- 
rier-phase velocity; Us0, discrete-phase velocity on the axis; Us, discrete-phase velocity; 
ds, average size of the solid-phase particles; 7p, specific weight of the material of the 
particles; Ps, discrete-phase density in the stream (mass of particles per unit volume of 
stream); 0s0, discrete-phase density on the axis of the stream; PB, carrier-phase density; 
QT, discrete-phase flow per second; QB, carrier-phase flow per second; K = QT/QB , solid- 
phase concentration in the stream; X, distance from the entry of the discrete phase into the 
tube to the exit cross section of the tube; D, diameter of the accelerating device; ra, 
radius of the exit cross section of the nozzle; and g, gravitational acceleration. 
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PROPAGATION OF COMPRESSION WAVES IN A LONG VERTICAL CHANNEL 

CONTAINING A GASIFIED PACKET 

S. D. Tseitlin UDC 532.529.5:532.135 

A solution is obtained for the problem of the pipe flow of a compressiblenon- 
Newtonian fluid involving the passage of a pressure pulse in annular and cir- 
cular channels containing a homogeneous gas-liquld packet. 

The study of processes connected with the transmission of compression waves in long 
channels filled with a non-Newtonian fluid - including gas-liquid packets - is of great 
interest. The need to solve such problems arises primarily when examining the subject of 
the prospecting and exploitation of oil and gas deposits. Fields that are being worked 
nearly always contain plugging and drilling fluids. These fluids, together with oil, have 
non-Newtonian properties and may contain gas-liquid occlusions of natural gas or air. The 
solutions obtained for these problems can also be used in the study of the dynamic proces- 
ses occurring during the transfer of information along a hydraulic channel, during the pipe 
flow of fluids, in power ensineering , etc. 

In the course of solving the problems discussed above, it iS also possible to study 
the way in which the transmission of dynamic disturbances in long channels is affected by 
the nonlinear viscosity and density of the fluid, the shape and dimensions of the cross 
section of the channel, and the presence of gas occlusions with different dimensions and 
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gas contents. As has been shown by both theoretical and experimental studies (such as [1-3]) 
involving modeling of the transmission of dynamic disturbances in a channel, if an inx~stiga- 
tion is limited to disturbances of relatively low frequency (less than i0 Hz), it is possible 
to use a quasisteady approximation [2] of the system of equations which describes pipe flow 
with allowance for the effect of viscous friction: 

O P  _.  ~ o q  , ~ a q  = ~ a p  �9 ( 1 )  

at f az f Ot Oz 8 
As an illustration of the solution of Eqs. (i), we will examine a problem involving 

determination of the presence of a gasified packet in the annular space of a gas test well 
at different times during thetransmission of a pressure pulse generated at the weli bottom 
by aspecial device. The pulse travels through a central circular pipe and the annular 
channel formed by this pipe and the wall of the well [4]. A difference arises in the time 
of passage of the pulse through channels of the same length due to its slowing in the case 
of the movement of a gasified column of liquid. The shape of the pulse is also distorted 
by viscous friction and the presence of boundaries where it is partially reflected. Tae 
problem just described arises in the study of the transmission of well-bottom data aloag a 
hydraulic channel. 

We will examine a vertical channel of length L consisting of a central circular pipe 
with an inside diameter D and outside diameter D 2 (Fig. ib). A liquid with the denstiy p 
and a theology approximated by an exponential model wtih constant values of K and N (T = 
Ki N ) flows down through the pipe at the rate q0. The liquid is raised to the surface 
through the annular channel formed by the outside wall of the central pipe and another pipe 
of diameter D~ positioned coaxially with respect to the first pipe. Part of the annular 
channel is filled by a gasified packet of length Hgp with a gas content a. Meanwhile, the 
lower boundary is located the distance X from the 5ottom. Since the processes connected 
with the propagation of dynamic perturbations in the channel occur incomparably more rapidly 
than the processes connected with the transport of the liquid and gas, we will consider the 
position of the gasified packet to be fixed and the gas-liquid mixture to be homogeneous. 
Then the speed of sound and density in the homogeneous gas-liquid mixture are determined in 
accordance with [5]: 

c~=!(~pg+(t--=)~)(~ pgC~ = + t------%) 1-~p:~s ' 
(z) 

p = =pg-~ (1 - -  a) 9 ~; 9g =PmP/Pat=. 

With a gas content a = 0 (absence of gas), c = cs With a gas content a = I (absence cf a 
liquid phase), c = Cg. It should be noted that the speed of sound in the gas-liquid mixture 
may be less than Cg and cs within a wide range of gas contents. Located at the bottom of 
the well (z = O) is a special device which generates individual (or series of) pressure 
pulses through a time change in the cross section of the pipe along a certain part of its 
length. Here, a change may be realized in either the amplitude of the signal (&P~), its 
duration (Tpz, ~p2),~or its shape (kl, k 2) in accordance with the following expression: 

where 0 < {k  z ,  

APp( 0 = 

k 2} < i0.  

hP~ k' a t  O <  t < ~ T p l  , 

t - - f~ 

0 at T > ~p2, 

(3) 

The shear stress on the wall during laminar flow of a fluid whose rheology is appr)x- 
mated by an exponential model is as follows: T = K(%z) N = Al~zq N, in the circular pipe; T = 
K(i2) N = A262q , in the annular pipe. Here, iz and 6% are the shear velocity and the hydrau- 
lic radius of the annular space of the well. Thus, system (i) takes the following form for 
the problem being solved: 

O__P_P = p~ Oq O q -  [~ ( a_~P _}_AtqN~, i = l ,  2 ' (~) 
at [~ O z '  ot p 

where, in accordance with [4]: 
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A 1 - 4 K [  8 3N'+" 1 ] N . 
D ~xD N ' 

A,- 4---C-K [ 
D~ " D  2 

16 (2N -k- 1) , ]A,; 

N~ (D 1 + D2) (D a -- D~) 2 J 

(5) 

fi being the cross-sectional area of the pipe. 

The values of density p and the speed of sound c change along the channel in relation 
to the position, size, and gas content of the gas-liquid packet in accordance with Eqs. (2). 
The boundary condition at the inlet of the central pipe corresponds to a constant flow rate, 
i.e., q(t, L) = q0. The boundary condition at the outlet of the annular pipe has the form: 
P(t, L) = Patm = 105 Pa. As the initial distributions of pressure and flow rate in the 
pipe, we took their distributions corresponding to steady flow with the rate q0. 

System of differential equations (4), describing the propagation of dynamic perturba- 
tions in pipes, is a hyperbolic system. One of the most natural methods of solving it is 
therefore the method of characteristics [2]. 

An analysis of Eqs. (4) indicates the existence of two families of characteristic curves 
with the slope 7 = dz/dt = • in the plane (z, t). Thus, these curves have the form of 
straight lines with a slope corresponding to •163 in that part of the channel containing the 
nongasified liquid. Meanwhile, the slope of the characteristic curves is determined by Eq. 
(2) in the part of the channel where the gas-liquid packet is located. Two characteristic 
curves with different slopes emanate from the points corresponding to the boundaries of the 
liquid and gas-liquid packet (points 3"', i"', 2"' in Fig. la). Since we chose a constant 
time step (T = h/c), this makes it necessary to establish different grid steps with respect 
to z(h.) in relation to the location of the grid node (j). Considering that the following 2 
relation is valid along the characteristic curve 

d O a dz  
d t  Ot Oz dt 

and r e p l a c i n g  t h e  p a r t i a l  d e r i v a t i v e s  w i t h  r e s p e c t  t o  t in  Eq. (4 )  by c o m l e t e  d i f f e r e n t i a l s ,  
we can o b t a i n r e l a t i o n s  f o r  t h e  c h a r a c t e r i s t i c  c u r v e s  ( t h e  s u b s c r i p t  i can be o m i t t e d ) :  

[ dP q- cdq q- c.._A_A qNdt = O, dP - -  pc._ dq - -  cAqNdt = 0. (6 )  
p p f 

The first relation is satisfied for curves passing through points i and 3, while the 
second is satisfied for curves passing through points 2 and 3 (see Fig. la). Using finite 
differences to approximate values of the differentials in Eqs. (6) (such as dP = Ps - PI) 
for the first characteristic curve), we obtain an algebraic system relative to the pressure 
and flow rate at point 3: 

Af q~dz q- [ P1 -I- cql; Pa q- cq3 = - -  
P P P (7) 

P3-- - -~-  qs = Aq~dz q- P~---~--  q~, 

Thus, the method of characteristics being used to solve the problem is based on the fact 
that we can determine the pressure and flow rate at the time t + dt(P~, q3) if we know the 
distribution of pressure and flow rate along the entire channel at the moment t (the values 
PI, ql, P2, q2). One of the characteristic curves and the corresponding boundary condition 
(points I' and 3' in Fig. la) are used to determine the running values of P3 and q3 in the 
upper sections of the channel. In the sections of the channel corresponding to the boundar- 
ies of the liquid and the gas-liquid packet and in the section where the liquid from the cen- 
tral pipe enters the annular pipe (z = 0), we match the solutions, i.e., different values 
of p, C, A, f, and hj corresponding to the locus of the characteristic curves (such as for 
points i"' and 2'" in Fig. la) are inserted into system (7) in the course of its solution). 

After we determine the pressure and flow rate at the moment of time t + T, we proceed 
from the solution of system (7) for all points of the grid (j) to the next time step. We 
continue to do so until we have covered the entire time interval of interest to us. 
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Fig. i. Location of characteristic curves in the plane 
(z, t) (a) and general view of the channel, including 
the gasified packet (I), pressure gages (2), and pulse 
generator (3)(b). 

As an example, we will examine the solution of the problem for the case when partial 
closure of the channel occurs at the bottom at z = 0. This leads to the formation of a 

0 5 pressure pulse that obeys Eq. (31). Meanwhile, we let AP~ ~ 6"10 Pa; ~p2 = i sec; ~l = 
0.5 sec; k I = 0.5; k 2 = i. The compression wave formed in the central pipe ascends in the 
channel.and after be!ngattenuated ~ somewhat by viscous friction is detected over a period 
of time At = L/c by pressure gage 2 (see Fig. Ib). The rarefaction wave formed below the 
annular channel travels to the mouth and in the process also undergoes attenuation due to 
viscous friction. Meanwhile, the pressure gage 2, positioned several meters from the mouth 
of the annular pipe, records the wave with a certain lag due to its slowing by the amount 
At as a result of its passage along the gasified packet (At = H~p/Cs Solving this p cob- 
lem for different channel geometries (L, D, D l, D2), liquid densities and rheologies (p, 
K, N), gas-packet dimensions (H~D), positions (X), gas contents (~), and types of gas (r 
p~), we can optimize the following parameters: the amplitude (AP~), duration (~pl, ~D2), ~ 
and shape (k I, k=) of the pulse which should be detected by the gages located at the~mo~th 
of the channel. Here, by analyzing such solutions, we can better understand the physicsof 
the processes connected with the propagation, attenuation, and reflection (at boundaries) 
of compression waves in such a complex channel. By setting the sensitivity and frequency 
characteristics of the sensors, we can also use the given mathematical model to determine 
theiroptimum location, the smallest (with respect to length and gas content) detectable 
(over ~t) gasified packets, and the accuracy of the method in relation to the parameters 
of the pulse and the model. It should be noted that the reflection from boundaries for 
plane harmonic waves depends on the ratio of the wave resistances (pici), since the refiec- 
tion coefficient is equal to [6]: 

(pch + (pc)~ (8) 

Determining the values of (PC)i, we can use Eqs. (2) to evaluate the reflection coefficient. 
For realistic values of the parameters of the model being examined, this coefficient ranges 
from 0.5 to 0.95. 

Let us examine some of the results calculated for a specific model with the following 
parameters: L = 1500 m; D I = 0.204 m; D= = 0.114 m; D = 0.094 m; pz = ii00 kg/mS; K = 0.287; 
N = 0.72; Pg0 = 1.28 kg/m3; ~ = 0.i; X = 500 m; Hgp= 150 m; cs = 1350 m/sec; Cg = 350 =/ 
sec. ~ The parameters of the pressure pulse excited at the bottom at z = 0 were described 
above. 

Figure 2 shows pressure distributions obtained from the solution of the problem. It 
is evident from Fig. 2a that the two pressure pulses created by a temporary local resistance 
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Fig. 2. Pressure distribution along the channel 
at different moments of time; i) gasified packet. 
P, MPa; z, m. 

at the bottom of the pipe (z = 0) tmavel about 350 m from the bottom by the moment t = 0.75 
sec. However, since the fluid flow is directed downward in the central pipe, a compression 
wave develops in this pipe and a rarefaction wave develops in the annular pipe. It is evi- 
dent from Fig. 2 - which shows the pressure distribution in the channel at t = 1.12 sec - 
that the rarefaction wave is partially reflected from the lower boundary of the gas-liquid 
packet as it travels through it. The reflected wave (2) is a compression wave because the 
reflection coefficient calculated for this boundary from (8) is negative. We also note that 
the distance travelled by wave (3) in the gas-liquid packet (s is shorter than the distance 
travelled by the reflected wave (s Meanwhile, s163 = c/c a (c, determined from Eq. (2), 
is equal to about 395 m/sec). Compression wave (i) formed in~tially in the activation of 
the channel, continues to move toward the mouth of the central pipe at the velocity cs The 
pressure maximum is formed about 0.5 sec after the beginning of operation (activation) of 
the channel. Thus, as follows from Fig. 2b, this pulse is then located the distance (1.12- 
0.05) x 1350 m 840 m from the bottom. 

In Fig. 2c (t = 1.49 sec), the total number of pulses formed inside the channel in- 
creases. The compression waves in the central part of the pipe move toward the mouth and 
correspond to the pulses connected with activation of the channel and reflection from the 
lower boundary of the gas-liquid packet. 

The third pulse (Fig. 2=) is a compression wave formed by partial reflection, from the 
well bottom, of the pulse created by reflection from the lower boundary of the packet. Thus, 
the second and third pulses are located different distances from the bottom and move in op- 
posite directions. The fourth and fifth pulses, being rarefaction waves, are formed with 
the passage and reflection of the initial pulse in the annular pipe through the upper bound- 
ary of the gas-liquid packet. Meanwhile, since the fourth pulse appears as a result of re- 
flection from this boundary with a positive reflection coefficient, it too (as the trans- 
mitted pulse) is a rarefaction wave. All of the pressure pulses discussed above coincide 
in terms of time and velocity. Thus, the first, second, and third pulses are displaced in 
the liquid (relative to the pressure distribution at the preceding moment of time At = 0.37 
sec) the distance s = 0.37"1350 = 500 m. The third pulse travels about 150 m toward the bot- 
tom. Then, after reflection, it travels about 350 m in the opposite direction. The fourth 
pulse travels the distance s = 0.37-395 = 140 m in the gasified packet during the same 
period of time. First this pulse travels in the direction of the boundary. After reflec- 
tion, it then moves away from the boundary. The fifth pressure pulse travels about 50 m in 
the packet and 400 m in the annular pipe during the above-indicated time, i.e., the total 
time of its motion is equal to At = 50/395 + 400/1350 = 0.4 sec. Figure 2d shows the pres- 
sure distribution along the e~annel at the time t = 2.237 sec. It is found to be even more 
complex in character than the previous distribution, due to multiple reflections on the boun- 
daries and the bottom. Here, we will note only the main features. The first and second 
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pipe (Pl) and the annular channel (P2) over time for 
different lengths of gasified packet (H=D) (X = 500 
m; ~ = 0.5): i) P2 at Hgp = 150 m; 2) 3~b; 3) 450; 4) 
PI at any Hgp. 

pulses, being compression waves traveling through the central pipe, are connected wit~ re~. 
flection from the lower boundary of the packet and the mouth of this pipe (2). It shculd 
be mentioned that they move in opposite directions and that the first pulse is smaller in 
amplitude than the second. The third pulse is a rarefaction wave which develops due to re- 
flection from the upper boundary of the packet. Its partial reflection when it passes through 
the bottom (z = 0) accounts for the fact that the fourth and third pulses are located the 
same distance from the bottom and move in opposite directions. The fifth pulse is a compres- 
sion wave which arises from the reflection of the rarefaction wave from the free surface at 
the mouth of the annular pipe. 

The pattern of pressure distribution along the channel subsequently has a tendenc F both 
toward the appearance of an even greater number of pulses (due to reradiation at boundaries) 
and toward their gradual decay. The rate of pulse attenuation here depends on the rheology 
of the liquid, and complete attenuation occurs 10-20 sec after the beginning of the process 
for actual viscous liquids. 

As was shown by calculations performed with the given model, a twofold change in uhe 
viscosity of the liquid (for K = 0.574) is accompanied by a decrease in the amplitude of the 
pressure pulse arriving at the mouth of the channel APl(t) from 1.05 to 0.6 MPa. 

It should be noted that the pulses connected with the transmission of the compres=~ion 
waves which are generated upon activation of the channel in the central and annular pipes 
make it possible to detect the presence of a gasified packet from the magnitude of the lag 
time At. Figure 3 shows results of calculations performed with the given model for different 
packet lengths with a gas content ~ = 0.5. These results illustrate well the essence of the 
method in [4] and agre with the experimental curves presented there. 

We can draw the following conclusions from numerous computer calculations performed 
with the given model for different parameters characterizing the propagation of dynamic dis- 
turbances in a channel. 

i. A pressure pulse of several atmospheres lasting from tenths of a second to several 
seconds travels from ~0,000 to 20,000 m in a long channel filled with a viscous non-Newton- 
ian fluid before it undergoes complete attenuation. The time of attenuation depends o~ the 
viscosity of the liquid and the cross section of the channel. 

2. A compression wave is more easily detected from the end of the channel where pres- 
sure is maintained to inject the liquid than it is near the free surface of the liquid at 
the mouth of the annular pipe (a more sensitive transducer is required in the latter case). 
If the latter approach is used, it is necessary to place the transducer some distance from 
the surface. 

3. The presence of a gas-liquid packet in the channel lowers the amplitude of the sig- 
nal that reaches the mouth. This occurs because the attenuation caused by viscous friction 
is augmented by reflection of the signal at two interfaces~ The attenuating effect of the 
reflections increases with an increase in gas content due to an increase in the reflection 
coefficien~t. 
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4. With the passage of a pressure pulse through an interface between two media in the 
case when the wave resistance (pc) of the second medium is lower (lower boundary of the 
packet, free surface), the reflected compression wave changes sign but the velocity remains 
the same. In the case when the wave resistance of the second medium is greater (upper boun- 
dary of the packet, well bots mouth of the central tube), the reflected compression wave 
retains its sign and the velocity changes to the opposite value. 

5. The transmitted pressure pulse always retains the sign of the transmitted wave. 
Meanwhile, the amplitudes of the pressure pulses and the velocities of the incident, trans- 
mitted, and reflected (from the interface) waves are such as to satisfy the condition of 
equality of the total pressures and the normal components of velocity at the boundary. 

NOTATION 

P(Z, t), pressure in the channel; q(z, t), volumetric flow rate of liquid; p, density 
of liquid; c, velocity of dynamic disturbances in the fluid; ~, shear stress; 6 = f/Z, cor- 
rected hydraulic radius of pipe; f, cross section of channel; s perimeter of channel; ~, 
gas content; p~, ps density of gas and liquid; cR, ci, speed of sound in the gas and liquid; 
Pg0, densis o~ gas under atmospheric conditions [at P = Patm); K, N, constants in the expo- 
nential theological model of the liquid; Kre f, reflection coefficient; L, length of channel; 
X, distance from the bottom to the lower boundary of the paket; D, D2, inside and outside 
diameters of pipe; D I, inside diameter of external pipe of the annular channel; Hgp, height 
of the gasified packet. 
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NUMERICAL INVESTIGATION OF NONEQUILIBRIUM TWO-PHASE FLOWS IN AXISYMMETRIC 

LAVAL NOZZLES 

P. M. Kolesnikov and V. V. Leskovets UDC 533.6.011.3 

A computation algorithm is elucidated and results are presented of the numerical 
solution of two-phase flow equations. A comparison is made with the experimental 
and computed data of other authors. 

Flows of two-phase mixtures consisting of a gas and particles or drops suspended therein 
are extensively widespread in both nature and in technical applications. A set of typical 
examples of such two-phase flows can be presented. Certain of the natural phenomena are the 
motion of raindrops or snow in clouds and mist, dust and sand storms, scattering of particles 
of different origin in the atmosphere, etc. A broad circle of applied problems is associated 
with the flow and application of aerosols of different kinds, intensification of the heat 
and mass transfer processes in chemical production, natural gas transport, thermal and mech- 
anical treatment of friable materials, etc. 

Aviation and cosmonautics also inevitably encounter the solution of theoretical problems 
and the performance of extensive testing investigations in this area. Great value is attrib- 
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